资源类型

期刊论文 401

年份

2024 1

2023 27

2022 24

2021 19

2020 18

2019 18

2018 14

2017 12

2016 21

2015 19

2014 15

2013 12

2012 8

2011 23

2010 11

2009 17

2008 17

2007 22

2006 19

2005 19

展开 ︾

关键词

临界风速 2

全寿命周期 2

多目标 2

强度理论 2

超光速 2

路径 2

300 M钢 1

ADV 1

Au/Ti双功能催化剂 1

Casimir力 1

Chebyshev多项式 1

Dirac理论 1

D区 1

EFP 1

FHW 1

GDMS 1

GH位移 1

H2有效利用率 1

Hilare 机器人 1

展开 ︾

检索范围:

排序: 展示方式:

Velocity gradient elasticity for nonlinear vibration of carbon nanotube resonators

Hamid M. SEDIGHI, Hassen M. OUAKAD

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1520-1530 doi: 10.1007/s11709-020-0672-x

摘要: In this study, for the first time, we investigate the nonlocality superimposed to the size effects on the nonlinear dynamics of an electrically actuated single-walled carbon-nanotube-based resonator. We undertake two models to capture the nanostructure nonlocal size effects: the strain and the velocity gradient theories. We use a reduced-order model based on the differential quadrature method (DQM) to discretize the governing nonlinear equation of motion and acquire a discretized-parameter nonlinear model of the system. The structural nonlinear behavior of the system assuming both strain and velocity gradient theories is investigated using the discretized model. The results suggest that nonlocal and size effects should not be neglected because they improve the prediction of corresponding dynamic amplitudes and, most importantly, the critical resonant frequencies of such nanoresonators. Neglecting these effects may impose a considerable source of error, which can be amended using more accurate modeling techniques.

关键词: velocity gradient elasticity theory     nanotube resonators     differential-quadrature method     nonlinear vibration    

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 187-197 doi: 10.1007/s11465-015-0339-9

摘要:

In this paper, for the first time, the modified strain gradient theory is used as a new size-dependent Kirchhoff micro-plate model to study the effect of interlayer van der Waals (vdW) force for the vibration analysis of multilayered graphene sheets (MLGSs). The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. After obtaining the governing equations based on modified strain gradient theory via principle of minimum potential energy, as only infinitesimal vibration is considered, the net pressure due to the vdW interaction is assumed to be linearly proportional to the deflection between two layers. To solve the governing equation subjected to the boundary conditions, the Fourier series is assumed for w=w(xy). To show the accuracy of the formulations, present results in specific cases are compared with available results in literature and a good agreement can be seen. The results indicate that the present model can predict prominent natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.

关键词: graphene     van der Waals (vdW) force     modi- fied strain gradient elasticity theory     size effect parameter    

水平管道淤积断面紊流的速度分布研究

王冬梅,张士林

《中国工程科学》 2005年 第7卷 第2期   页码 66-68

摘要:

对固定床水平管道断面的紊流速度分布进行研究。将整个断面分为弓形圆弧断面和渗流断面。弓形圆弧断面的速度分布研究基于圆形断面管道紊流理论,并且结合一定的假设数值模拟弓形圆弧断面管道的紊流速度分布规律;渗流断面的速度分布研究基于渗流理论。通过一定的边界条件将两部分断面速度分布组合成整个断面的速度分布。大量的实验证明本研究方法及程序较好地模拟了此断面的紊流速度分布。

关键词: 弓形圆弧断面     固定床     紊流速度     零剪力点     水力坡度    

Suspended solid abatement in a conical fluidized bed flocculator

Dandan ZHOU, Shuangshi DONG, Keyu LI, Huizhong JIANG, Dandan SHANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 127-134 doi: 10.1007/s11783-012-0415-x

摘要: With the random movement of silica gel beads in a conical fluidized bed, micro-vortices resulting from the fluidization promoted the collision and aggregation of suspended fine kaolin powders. The abatement efficiencies of the suspended fine solids under several hydrodynamic conditions were studied, and a suitable control strategy for operating the conical fluidized bed flocculators was identified. The suspended solids abatement efficiency was found to increase with increasing Camp Number and flocculation time ( ), but decreased with the increase of velocity gradient ( ) within the range studied in this research (165.1–189.6 s ). The abatement efficiencies were all more than 60% at the range of = 165–180 s and = 15–33 s at an initial kaolin solid concentration of 150 mg·L , polymer aluminum chloride dosage of 60 mg·L and sedimentation time of 20 min. However, the formation of flocs was influenced by the liquid backmixing. Excessive backmixing caused the breakup of flocs and resulted in difficulty for the fine powders to aggregate and sediment to the reactor bottom. The results of the calculated fractal dimension and measured free sedimentation velocity of flocs obtained at different runs showed similar flocs properties, and indicated an easy control strategy for sedimentation of the flocs.

关键词: conical fluidized bed     flocculation     velocity gradient    

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 38-48 doi: 10.1007/s11709-018-0479-1

摘要: Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

关键词: modulus of elasticity     normal strength normal weight concrete     empirical models     design codes     compressive strength     density    

Yue’s solution of classical elasticity in

Zhong-qi Quentin YUE

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 215-249 doi: 10.1007/s11709-015-0298-6

摘要: This paper presents the exact and complete fundamental singular solutions for the boundary value problem of a -layered elastic solid of either transverse isotropy or isotropy subject to body force vector at the interior of the solid. The layer number is an arbitrary nonnegative integer. The mathematical theory of linear elasticity is one of the most classical field theories in mechanics and physics. It was developed and established by many well-known scientists and mathematicians over 200 years from 1638 to 1838. For more than 150 years from 1838 to present, one of the remaining key tasks in classical elasticity has been the mathematical derivation and formulation of exact solutions for various boundary value problems of interesting in science and engineering. However, exact solutions and/or fundamental singular solutions in closed form are still very limited in literature. The boundary-value problems of classical elasticity in -layered and graded solids are also one of the classical problems challenging many researchers. Since 1984, the author has analytically and rigorously examined the solutions of such classical problems using the classical mathematical tools such as Fourier integral transforms. In particular, he has derived the exact and complete fundamental singular solutions for elasticity of either isotropic or transversely isotropic layered solids subject to concentrated loadings. The solutions in -layered or graded solids can be calculated with any controlled accuracy in association with classical numerical integration techniques. Findings of this solution formulation are further used in the companion paper for mathematical verification of the solutions and further applications for exact and complete solutions of other problems in elasticity, elastodynamics, poroelasticty and thermoelasticity. The mathematical formulations and solutions have been named by other researchers as Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.

关键词: elasticity     solution     layered solid     graded material    

Simulation of horizontal slug-flow pneumatic conveying with kinetic theory

GU Zhengmeng, GUO Liejin

《能源前沿(英文)》 2007年 第1卷 第3期   页码 336-340 doi: 10.1007/s11708-007-0050-6

摘要: Wavelike slug-flow is a representative flow type in horizontal pneumatic conveying. Kinetic theory was introduced to establish a 3D kinetic numerical model for wavelike slug gas-solid flow in this paper. Wavelike motion of particulate slugs in horizontal pipes was numerically investigated. The formation and motion process of slugs and settled layer were simulated. The characteristics of the flow, such as pressure drop, air velocity distribution, slug length and settled layer thickness, and the detailed changing characteristics of slug length and settled layer thickness with air velocity were obtained. The results indicate that kinetic theory can represent the physical characteristics of the non-suspension dense phase flow of wavelike slug pneumatic conveying. The experiment in this paper introduced a new idea for the numerical calculation of slug-flow pneumatic conveying.

关键词: velocity distribution     detailed     slug-flow     gas-solid     theory    

prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient

《结构与土木工程前沿(英文)》   页码 1310-1325 doi: 10.1007/s11709-023-0997-3

摘要: Concrete is the most commonly used construction material. However, its production leads to high carbon dioxide (CO2) emissions and energy consumption. Therefore, developing waste-substitutable concrete components is necessary. Improving the sustainability and greenness of concrete is the focus of this research. In this regard, 899 data points were collected from existing studies where cement, slag, fly ash, superplasticizer, coarse aggregate, and fine aggregate were considered potential influential factors. The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult. Instead of the traditional compressive strength test, this study combines five novel metaheuristic algorithms with extreme gradient boosting (XGB) to predict the compressive strength of green concrete based on fly ash and blast furnace slag. The intelligent prediction models were assessed using the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and variance accounted for (VAF). The results indicated that the squirrel search algorithm-extreme gradient boosting (SSA-XGB) yielded the best overall prediction performance with R2 values of 0.9930 and 0.9576, VAF values of 99.30 and 95.79, MAE values of 0.52 and 2.50, RMSE of 1.34 and 3.31 for the training and testing sets, respectively. The remaining five prediction methods yield promising results. Therefore, the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete. Finally, the developed SSA-XGB considered the effects of all the input factors on the compressive strength. The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.

关键词: sustainable concrete     fly ash     slay     extreme gradient boosting technique     squirrel search algorithm     parametric analysis    

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

Real time monitoring for analysis of dam stability: Potential of nonlinear elasticity and nonlinear dynamics

T. CHELIDZE, T. MATCHARASHVILI, V. ABASHIDZE, M. KALABEGISHVILI, N. ZHUKOVA

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 188-205 doi: 10.1007/s11709-013-0199-5

摘要: Large dams are complex structures with nonlinear dynamic behavior. Engineers often are forced to assess dam safety based on the available incomplete data, which is extremely difficult. This important problem can be solved with the modern theory of complex systems. It is possible to derive characteristics of the whole unknown dynamics of a structure using few data sets of certain carefully selected representative parameter(s). By means of high quality continuous records of some geotechnical characteristic(s) of a dam and modern methods of time series linear/nonlinear analysis the main dynamical features of the entire, unknown process (here—dam deformation) can be analyzed. ?We created the cost-effective Monitoring Telemetric System for Dam Diagnostics (DAMWATCH), which consists of sensors (tiltmeters), terminal and central controllers connected by the GSM/GPRS Modem to the diagnostic center. The tilt data recorded for varying reservoir level are compared with static design model of dam deformations computed by a finite element method (FEM) for the dam-reservoir-foundation system. Besides, recently developed linear/nonlinear data analysis and prediction schemes may help to quantify fine dynamical features of the dam behavior. The software package DAMTOOL has been developed for this purpose. ?The differences between measured and theoretically predicted response parameters of the dam may signal abnormal behavior of the object. The data obtained already by testing of the DAMWATCH/DAMTOOL system during operation of the high Enguri arc dam and reservoir (Georgia) show interesting long-term and short-term patterns of tilts in the dam body, which can be used for dam diagnostics. The proposed real-time telemetric monitoring (DAMWATCH) complex and linear/nonlinear dynamical analysis system (DAMTOOL) are unique.

关键词: real time monitoring     telemetry     dam tilts     diagnostic tools     hysteresis     nonlinear dynamics    

Axisymmetric loading on nanoscale multilayered media

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 152-164 doi: 10.1007/s11709-022-0895-0

摘要: Multilayered nanoscale structures are used in several applications. Because the effect of surface energy becomes nontrivial at such a small scale, a modified continuum theory is required to accurately predict their mechanical behaviors. A Gurtin–Murdoch continuum model of surface elasticity is implemented to establish a computational scheme for investigating an elastic multilayered system under axisymmetric loads with the incorporation of surface/interface energy. Each layer stiffness matrix is derived based on the general solutions of stresses and displacements obtained in the form of the Hankel integral transform. Numerical solutions to the global equation, which are formulated based on the continuity conditions of tractions and displacements across interfaces between layers, yield the displacements at each layer interface and on the top surface of the multilayered medium. The numerical solutions indicate that the elastic responses of multilayered structures are affected significantly by the surface material properties of both the top surface and interfaces, and that they become size dependent. In addition, the indentation problem of a multilayered nanoscale elastic medium under a rigid frictionless cylindrical punch is investigated to demonstrate the application of the proposed solution scheme.

关键词: functionally graded layer     Gurtin–Murdoch surface elasticity     multilayered medium     size dependency     stiffness matrix    

Proca电磁理论的若干问题

黄志洵

《中国工程科学》 2005年 第7卷 第3期   页码 6-12

摘要:

2004年6月,位于西非Oklo的美国Los Alamos实验室的核工业反应堆对实验数据做再分析后得出结论说,近20亿年内精细结构常数减小了4.5×10-8。常数不常,意味着光速有很小的变化。这是最新的与狭义相对论不符的实验报告。另一方面,光子如有质量,Maxwell方程组将被Proca方程组所取代,而磁矢位(势)A将成为可观测量。而过去和现在都有许多方法测量光子的质量。

文章的主要目的是在Proca理论框架内研究电磁波波速,发现即使在自由空间(真空)条件下也会出现超光速传播;同时又对波导与Proca波的截止现象做了比较,给出了相应的结果。

关键词: 狭义相对论     Maxwell方程组     Proca方程组     电磁波波速     光子的静止质量    

Predicting shear strength of slender beams without reinforcement using hybrid gradient boosting trees

Thuy-Anh NGUYEN; Hai-Bang LY; Van Quan TRAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1267-1286 doi: 10.1007/s11709-022-0842-0

摘要: Shear failure of slender reinforced concrete beams without stirrups has surely been a complicated occurrence that has proven challenging to adequately understand. The primary purpose of this work is to develop machine learning models capable of reliably predicting the shear strength of non-shear-reinforced slender beams (SB). A database encompassing 1118 experimental findings from the relevant literature was compiled, containing eight distinct factors. Gradient Boosting (GB) technique was developed and evaluated in combination with three different optimization algorithms, namely Particle Swarm Optimization (PSO), Random Annealing Optimization (RA), and Simulated Annealing Optimization (SA). The findings suggested that GB-SA could deliver strong prediction results and effectively generalizes the connection between the input and output variables. Shap values and two-dimensional PDP analysis were then carried out. Engineers may use the findings in this work to define beam's geometrical components and material used to achieve the desired shear strength of SB without reinforcement.

关键词: slender beam     shear strength     gradient boosting     optimization algorithms    

Gradient-based compressive image fusion

Yang CHEN,Zheng QIN

《信息与电子工程前沿(英文)》 2015年 第16卷 第3期   页码 227-237 doi: 10.1631/FITEE.1400217

摘要: We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.

关键词: Compressive sensing (CS)     Image fusion     Gradient-based image fusion     CS-based image fusion    

Influence of freeze–thaw damage gradient on stress–strain relationship of stressed concrete

《结构与土木工程前沿(英文)》   页码 1326-1340 doi: 10.1007/s11709-023-0014-x

摘要: Influence of freeze–thaw damage gradient on stress–strain relationship of stressed concrete

关键词: strain relationship concrete    

标题 作者 时间 类型 操作

Velocity gradient elasticity for nonlinear vibration of carbon nanotube resonators

Hamid M. SEDIGHI, Hassen M. OUAKAD

期刊论文

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

期刊论文

水平管道淤积断面紊流的速度分布研究

王冬梅,张士林

期刊论文

Suspended solid abatement in a conical fluidized bed flocculator

Dandan ZHOU, Shuangshi DONG, Keyu LI, Huizhong JIANG, Dandan SHANG

期刊论文

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

期刊论文

Yue’s solution of classical elasticity in

Zhong-qi Quentin YUE

期刊论文

Simulation of horizontal slug-flow pneumatic conveying with kinetic theory

GU Zhengmeng, GUO Liejin

期刊论文

prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient

期刊论文

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

Real time monitoring for analysis of dam stability: Potential of nonlinear elasticity and nonlinear dynamics

T. CHELIDZE, T. MATCHARASHVILI, V. ABASHIDZE, M. KALABEGISHVILI, N. ZHUKOVA

期刊论文

Axisymmetric loading on nanoscale multilayered media

期刊论文

Proca电磁理论的若干问题

黄志洵

期刊论文

Predicting shear strength of slender beams without reinforcement using hybrid gradient boosting trees

Thuy-Anh NGUYEN; Hai-Bang LY; Van Quan TRAN

期刊论文

Gradient-based compressive image fusion

Yang CHEN,Zheng QIN

期刊论文

Influence of freeze–thaw damage gradient on stress–strain relationship of stressed concrete

期刊论文